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Modern clinical information system developers recog-
nize the need to associate temporal information with
clinical data. However, specific clinical systems cap-
ture different temporal features using a variety of data
modeling techniques. Two commonly used methods to
represent temporal information are point-based
events and interval-based durations. We recently
implemented a rule-based expert system for drug dose
monitoring on three clinical information systems. The
expert system requires both static drug dosing infor-
mation (drug name, amount, route, frequency) and
temporal dosing information (duration of therapy,
renewals, restarts). Our design goal was to use the
same expert system code on all three information sys-
tems by defining a common database schema to hide
differences in the original systems’ data models.
Although we have been successful in mapping clinical
data from these three source systems into a unified
temporal data representation, we describe how differ-
ences in handling time within the three clinical sys-
tems made this goal difficult to achieve.

INTRODUCTION

Starting with the original time-oriented data (TOD)
model, time has been recognized as being an espe-
cially critical component of clinical information.[1]
The database and medical informatics communities
both have active on-going research activities in mod-
eling, representing, and querying temporal informa-
tion in electronic databases.[2-5] The temporal
database community has defined two key temporal
dimensions: valid time is the time when a fact is true
in the modeled reality, transaction time is the time
when a fact is current in a database.[6] Although new
temporal data models have appeared in research pro-
totypes,[7, 8] most commercial clinical information
systems (CISs) use simple temporal representations.
The two most common representations are point-
based events and interval-based durations.

Point-based event representations associate a single
time-stamp, usually representing the valid time with
each new data element. Interval-based representations
associate two time-stamps, a start-time and stop-time,
representing the valid duration of the tuple. In both
representations, a second “system” time-stamp fre-
quently is included, representing the transaction time
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of the tuple. These two representations are not exclu-
sive; most current clinical information systems con-
tain both event- and duration-based temporal
concepts.

We have developed an expert system for drug dose
monitoring for three clinical informations systems at
Barnes and Jewish Hospitals: Systematics (formerly
TDS) HC-7000, Emtek System 2000, and a COBOL-
based self-developed pharmacy system. To prevent
the need to maintain different versions of the expert
system, we wished to create a single unified temporal
data model for drug orders irrespective of the source
system’s data model. We describe how differences in
temporal representations in these three systems
required significant processing to achieve a unified
temporal representation.

REPRESENTING DRUG DOSING

DoseChecker is a rule-based expert system which
identifies patients who may be receiving either exces-
sive or insufficient drug dosing based on patient
demographics, renal function, and other relevant
patient findings.[9] DoseChecker requires static drug
dosing information (drug name, amount, route, fre-
quency) and temporal dosing information (duration of
therapy, renewals, restarts). We defined a unified inter-
val-based temporal representation of the drug dosing
information which could be used by DoseChecker
(Table 1). Our goal was to create the required views
from the three source databases into the same repre-
sentation so that unmodified expert system code could
be used in any system.

Figure 1 illustrates the set of possible temporal repre-
sentations of medication orders and drug dosing
which could be found in a clinical information sys-
tem. Medication orders denote when a medication
order was initiated, terminated, held, or remewed.
Medication Administration Events denotes when a
patient actually receives a medication. Order intervals
denotes an interval of time during which an order for
a specific drug, amount, route, and frequency was
active. Drug Intervals record the time during which a
patient received a specific drug at a specific amount,
route, and frequency. Drug Intervals can combine
multiple order intervals under specific conditions (see



Table 1: Unified Representation of Drug Dosing

Information

Attribute Name Meaning
Registration Number unique patient identifier
Order Number unique order identifier
Expanded Order Number see text
Start Date start of drug order
Stop Date conclusion of drug order
Drug Class NDC drug class of order
Drug Code NDC drug code of order
Amount numeric drug amount
Units units of drug amount
Route administration route
Frequency drug dosing frequency

below). Drug courses record the time during which a
patient received a specific drug, even if the amount,
frequency or route changed. Figure 1 illustrates these
distinctions for a patient receiving a tapering course of
intravenous and oral Prednisone. The unified schema
shown in Table 1 is used to model both order- and
drug-interval abstractions. To perform the required
reasoning tasks, DoseChecker requires order- and
drug-interval abstractions to be generated from the
source CIS systems.

METHODS

Data from the Barnes CIS and Systematics (TDS) sys-
tems are generated from custom queries which run as
nightly batch jobs. Text files created from these que-
ries are transferred to a Sun Microsystems UNIX
server, are processed by text processing scripts and
are loaded into a Sybase relational database
(RDBMS).[10] Further processing using SQL scripts
are required to create tuples with the semantics and
format required for Table 1. Thus, the processing
required to normalize tuples occurs in three locations:
in mainframe-based queries, in UNIX-based text
scripts, and in RDBMS-based SQL scripts.[11]

Data from EMTEK are transferred to a Sybase rela-
tional database on a Sun Microsystems UNIX server
using the DataBridge product provided by the vendor.
Data transfers from EMTEK into Sybase occur every
two hours. Data are transformed into the format
required for Table 1 by defining a relational view over
multiple Sybase tables.

RESULTS

We describe our results using the five classes of tem-
poral abstractions shown in Figure 1.

Drug Courses [ Prednisone |
| L
[Prednisone ]| Prednisone Prednisone |
Drug Intervals 180 mg. IV q6h | [ 40 mg. PO qI2h 1 I 20 mg. PO qAM ]
Prednisone Prednisone [Prednisone | | Prednisone |
Order Intervals I'smmvmr' I'mmﬁrzﬁl 40mg. PO 1 I 20mg. PO GAM I
ql2h
Medication Prednisone Prednisone Prednisone Prednisone 20 Prednisone 20
Administration Events 80 mg. IV 40 mg. PO 40 mg. PO mg. PO mg. PO

Medication

Orders
End Prednisone 80 mg. IV q6h

Begin Prednisone 80 mg. IV q6h l

Renew Prednisone 40 mg. PO q12h
Begin Prednisone 40 mg. PO q12h

End Prednisone 40 mg. PO q12h

Begin Prednisone 20 mg. PO gAM
iEnd Prednisone 20 mg. PO gAM

Figure 1: Temporal Abstractions

Time



Medication Administration Events

Emtek and Systematics can. generate tuples which
denote individual drug administration events. How-
ever, we did not use these tuples to generate the
required abstractions directly because:

* it was too difficult to infer dosing frequencies
reliably from absolute administration times

¢ more than one medication administration event
must occur before a dosing frequency can be
inferred. To be most effective, DoseChecker
requires a dosing frequency as early as possible.

Medication Orders

All three systems record medication orders. Medica-
tion orders include a drug name, amount, units, and
frequency. The three systems use different techniques
to distinguish among medication start, stop, hold, or
renew orders. The Bames and EMTEK system main-
tain a unique order identifier which can be used to link
a medication stop, hold, or renew order to a specific
medication start order. Although Systematics records
start, stop, hold, and renew orders, the system assigns
each of these orders a unique order key. Thus in the
Systematics database, there is no direct way to deter-
mine to which start order a specific stop order refers.
This missing linkage causes significant difficulties in
creating order- and drug-interval abstractions.

Order Intervals

The presence of a medication start order is sufficient
information to create an initial order interval. This
tuple, with a null-valued stop time, is considered “cur-

rently active.” The combination of a medication start
order and a linked medication stop order is sufficient
to create a corresponding complete order interval.
This technique is used in the Barnes system. Unfortu-
nately, because Systematics does not link stop orders,
we have had to create a set of heuristic “best-match”
algorithms to try to pair a stop order to the most likely
start order. Despite having created a complex set of
matching criteria, we still infrequently see multiple
identical stop orders, stop orders which cannot be
matched to any start order, and start orders which
have had no corresponding stop order. Even detailed
manual review of these anomalies have not resolved
all of them.

In EMTEK, a database view can be created directly
from the primary source data to create an order-inter-
val view. However, because the data model used by
EMTEK’s Data Bridge product is not a “clinical”
model, a complex three-table equi-join using non-
intuitive attributes is required (Figure 2). Despite this
complex join, the EMTEK system requires the least
extraneous processing to achieve the desired order
interval abstraction.

Drug Intervals

Drug intervals represent the period of time a patient
received a specific drug at a uniform amount, route,
and frequency, irrespective of the number of orders
written during the course of therapy. Drug interval
abstractions are created by the temporal catenation of
temporally adjacent intervals when specific conditions
hold. For this task, two intervals are considered tem-

r_medication r_link_row schedule_piece Final View
emtek_id emtek_id - emtek_id = Registration Number
parameter Drug Name
route Route
dose_str Amount
dose_units = Units
] frequency = Frequency
start_time_row = Start Date
end_time_row = Stop Date
object_name > object_name
instance_number —}p-instance_number
object_class P object_name
instance_num —}#- instance_number
direction=1

Figure 2: EMTEK three-table join for order interval abstraction view. Arrows denote equi-join attributes.
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porally adjacent if the absolute difference between the
stop time of the first interval is within 24 hours of the
start time of the second order interval. In addition to
temporal adjacency, the two intervals must represent
the same drug, amount, route, and frequency. Two
order intervals can be joined to form a drug interval.
In addition, a drug interval can be extended by joining
the original drug interval with a temporally adjacent
order interval.

We use the same table to store both order intervals and
drug intervals. Tuples with positive order numbers
represent order intervals; tuples with negative order
number represent drug intervals. Order intervals
which are contained within a drug interval abstraction
contain the drug interval order number in the
expanded order number attribute. Order intervals
which do not participate in a drug interval have a
NULL value in the expanded order number attribute.
We have defined two views on this table:

* an “orders” view removes all drug interval
abstractions
* a “drugs” view combines drug intervals and sin-
gleton (noncatenated) order intervals
The “orders” view captures the sequence of drug
orders as received from the pharmacy system. The
“drugs” view captures the clinical sequence of drug
dosing.

None of the source systems provides drug interval
abstractions directly. Creating new drug intervals or
extending existing drug intervals is performed using a
set of complex SQL scripts. A key difficulty is
describing the temporal constraints between two can-
didate intervals in SQL.

Additional conditions ensure that the drug name,
amount, frequency, and route are identical. If the two
intervals are order intervals, a new drug interval must
be inserted; if the first interval is a drug interval, its
stop date must be extended to the stop date of the sec-
ond interval.

Drug Courses

Drug courses are a further generalization of drug
interval abstractions. Drug courses represent the
period of time a patient received a specific drug irre-
spective of changes in the amount, route or frequency
of administration.

As with drug intervals, none of the source systems
produce drug course abstractions. We generate drug
courses from tuples in Table 1 using the same defini-
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tion of “temporally adjacent” but removing the con-
straint that the drug amount, route, and frequency
must be identical for merging. Although the
DoseChecker expert system has not required drug
courses, a number of drug utilization studies have
used this abstraction to obtain the length of drug treat-
ment for drugs targeted for pharmacy cost-control
measures.[12]

DISCUSSION

The three clinical systems described here each have
temporal information associated with pharmacy-
related data. The diversity of primary data elements
and temporal representations has required significant
additional processing to populate a unified global
temporal representation of drug dosing intervals. We
do not use all available dosing information; for the
DoseChecker task, medication administration events
were not relevant and therefore have not been stored.
These point events would be mandatory if we expand
our expert system reasoning task to include the inter-
pretation of peak and trough drug level laboratory
results.

The RESUME system, developed by Shahar, employs
a variety of techniques to describe, detect, and create
temporal abstractions.[13] The RESUME system
could easily represent the temporal adjacency and
equi-join conditions to create drug intervals and drug
courses from order intervals. The example in Figure 1
illustrates a regimen of a tapering dose of Prednisone.
RESUME could detect the “tapering” property of the
Prednisone drug course abstraction. It would be
extremely difficult and tedious to detect this temporal
property using our SQL-based approach.

Haimowitz and Kohane developed a similar temporal
abstraction system, using a frame-based constraint
system based on trend templates.[14, 15] Like the
RESUME system, describing, detecting, and creating
the required interval abstractions and detecting the
“tapering” state of the Prednisone abstraction would
be easily done using trend templates.

An examination of Table 1 reveals that for pharmacy-
related events, our underlying temporal data model is
interval-based. Das has developed and implemented
an extended relational database system, called CHRO-
NUS, which directly supports interval-based temporal
models.[5, 8] Das motivates the need for CHRONUS
by highlighting special considerations for manipulat-
ing temporal attributes in the standard relational data
model. Our experience confirms Das’ assertions — the



application programmer assumes significant responsi-
bility for ensuring that temporal operations on tempo-
ral attributes are consistent. In addition, the
complexity of expressing even simple temporal com-
parisons in standard SQL makes this application task
even more difficult.

One gratifying outcome of our work has been the
demand for our data from other interested users
within the Department of Pharmacy. The unified
abstractions of drug intervals and courses has created
a method of visualizing and querying pharmacy-
related data that has not previously been available.
When coupled to commercial end-user querying tools,
the user community has found this information to be
able to answer questions not previously amenable to
querying in the source systems.[12]

CONCLUSIONS

Despite the existence of temporal information in three
clinical information systems, differences in temporal
representations made it difficult to exploit these data.
We have successfully mapped the original representa-
tions into a unified global representation and into a set
of specific temporal abstractions. This approach,
while requiring significant system-specific process-
ing, has resulted in a new information resource for use
by expert systems technology and ad-hoc end-user
queries.
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